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A geometric approach is introduced for understanding the phenomenon of phase synchronization in coupled
nonlinear systems in the presence of additive noise. We show that the emergence of cooperative behavior
through a change of stability via a Hopf bifurcation entails the spontaneous appearance of a gauge structure in
the system, arising from the evolution of the slow dynamics, but induced by the fast variables. The conditions
for the oscillators to be synchronised in phase are obtained. The role of weak noise appears to be to drive the
system towards a more synchronized behavior. Our analysis provides a framework to explain recent experi-
mental observations on noise-induced phase synchronization in coupled nonlinear systems.
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I. INTRODUCTION

Synchronization phenomena occur abundantly in nature
and in day to day life. A few well known examples are the
observations in coupled systems such as pendulum clocks,
radio circuits, swarms of light-emitting fireflies, groups of
neurons and neuronal ensembles in sensory systems, chemi-
cal systems, Josephson junctions, cardiorespiratory interac-
tions, etc. Starting from the observation of pendulum clocks
by Huygens, a vast literature already exists which studies
synchronization in coupled nonlinear systems—in systems of
coupled maps as well as in oscillators and networks ��1� and
references therein�. In recent times, different kinds of syn-
chronization have been classified—mutual synchronization,
lag synchronization, phase synchronization, and complete
synchronization �1–3�.

Many of these studies aim to understand the properties
exhibited by the systems once they synchronize or exhibit
phase locking. A comprehensive understanding still seems to
be lacking when one seeks to explain why the systems syn-
chronize. In this paper we introduce a geometric approach in
order to address this fundamental issue. We aim to under-
stand here the reason for the occurrence of synchronized and
phase-locked behavior in coupled nonlinear systems which
are subject to weak additive noise.

We consider a system of n nonlinear oscillators which are
coupled. We determine the conditions which the dynamically
evolving variables of the system must satisfy in order that
the various oscillators constituting the full system synchro-
nize in phase. Our study at the moment does not include
chaotic systems. We find that the presence of weak noise
assists in bringing about phase synchronization.

In Sec. II, we introduce a geometrical approach to discuss
coupled dynamics. We have adapted the methods which Wil-
czek and Shapere developed �4–6� to understand self-
propulsion of organisms by shape deformations in fluids at
low Reynolds number, for discussing the deformations and
changes in the orbit structure in phase space as the system
evolves in time. In Sec. III we discuss the dynamics of

coupled oscillatory systems in the presence of additive noise
at the close proximity of a Hopf bifurcation. We show the
spontaneous emergence of a nontrivial gauge structure for
such a system arising from the slow degrees of freedom, and
induced by the fast variables, and associate it with the geo-
metric approach introduced in Sec. II. In Sec. IV, we obtain
the condition required to be satisfied by any two oscillators
to exhibit phase synchronization and phase locking. Section
V summarizes the main results of the paper and points out
directions for future studies.

Our work is motivated by the need for a theoretical un-
derstanding of recent experiments on chemical oscillators �7�
and numerical simulations �8� which show noise-induced
phase synchronization in coupled nonlinear systems. �See
also �9,29�.�

II. THE GEOMETRY UNDERLYING THE DYNAMICS OF
COUPLED SYSTEMS

In a series of beautiful papers �4–6�, Shapere and Wilczek
established a geometric framework to discuss the motion of
deformable objects in the absence of applied external force.
We adopt these methods to understand a fundamental phe-
nomenon in nonlinear dynamics, namely phase synchroniza-
tion in coupled dynamical systems.

In the first section, the main idea underlying the paper is
developed, which is based on the approach used in �4–6� for
a deterministic system. Elaborating along these lines, in the
following sections we have studied a general system of
coupled nonlinear oscillators under the influence of additive
Gaussian white noise and we find the conditions under which
the coupled units within the full system can exhibit phase-
locked behavior and phase synchronization.

We consider a system of n coupled generalized oscillators
q�x , t� where the state variables q could in general be func-
tions not only of time, but could also depend on a set of
additional variables x, say spatial variables when there is a
metric structure associated with the variables

q̇i = f i�q1,q2, . . . ,qn,� j�, i = 1, . . . ,n, j = 1, . . . ,p .

�1�

Thus qi include also extended systems where the individual
elements could mutually influence each other through a*E-mail: janaki@lorentz.leidenuniv.nl; janaki@rri.res.in
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distance-dependent interaction between the elements. For in-
stance in the case of coupled chemical oscillators �8�, qi
would denote concentrations which have spatial dependence.
Another example occurs in biological information processing
where neurons interact in ensembles.

We study the simplest case in which, in the absence of
couplings, each of the n subsystems admits oscillatory solu-
tions for some parameter values � j. Switching on the mutual
coupling between these oscillators results in the emergence
of a collective behavior. It is then appealing to view the
collective behavior as having arisen as a result of some sort
of communication between different points in the configura-
tion space. Thus one is led to a geometrical description of the
system’s dynamical evolution.

For simplicity, we restrict ourselves in this paper to the
case in which the collective dynamics also exhibits limit
cycle behavior emerging via one or more Hopf bifurcations.
The more general situation which includes chaotic orbits for
the uncoupled dynamics is not considered here. We define
the configuration space of the full system as the space of all
possible flow lines and closed paths. We consider the situa-
tion when there is no external driving force, so that the space
of all possible contours is the space of oriented contours
centered at the origin.

In the absence of mutual couplings, the space of contours
consists of oriented closed orbits, each orbit inclined at an
angle with respect to the other. If we now turn on the mutual
couplings between these n subsystems gradually, each of the
orbits would gradually get deformed, going through a se-
quence of shape changes, and resulting subsequently in a net
rotation for it. The problem of interest is to link the dynami-
cal variables of the system with the net rotation induced by a
change of shape of the orbits for each of the n oscillators in
phase space.

The relative orientations of any two contour shapes can be
compared by fixing coordinate axes for each. Since there
exists a degeneracy in the possible choice of axes one can
make at each point in the space of contour shapes, each set of
reference frame we can choose from being isomorphic to En,
a gauge structure is therefore induced in this space which
facilitates going from one particular choice of axes to an-
other.

In �4–6�, the problem of self-propulsion at low Reynold’s
number made possible solely through shape deformations
was discussed. Each choice of reference frame fixed to a
shape, which assigned a “standard location” in space for each
shape, was associated with the motion and location of any
arbitrary shape in relation to its standard location. We follow
their methods closely to discuss deformations of the oriented
contours in the space of contour shapes.

Following �5,6�, the sequence of oriented contours S�t�
can be similarly related to the sequence of the corresponding
chosen reference standard contour shapes S0�t� by a rigid
displacement R�t�

S�t� = R�t�S0�t� , �2�

where in general, an n-dimensional motion R includes both
rotations R and a translation l

�R,l� = �R l

0 1
� , �3�

where R�t� is an n�n rotation matrix and stands for a se-
quence of time-dependent rigid motions. The contour bound-
aries are parametrized by the control parameters �i, for each
of which the rigid motion R acts on the vector �S0��� ,1�T.
The physical contours S�t� are invariant under a local change

S̃0 = ��S0�S0 �4�

made in the choice of standard contours S0. Then the contour
shape evolution can be written by combining Eq. �4� with
Eq. �2� as

S̃�t� = R�t��−1�S0�t��S̃0 = R�t�S̃0�t� . �5�

or

R̃�t� = R�t��−1�S0�t�� . �6�

The temporal change in the sequence of rigid motions can be
written as

dR
dt

= R�R−1
dR
dt

� � RA , �7�

where A can be identified with the infinitesimal rotation aris-
ing from an infinitesimal deformation of S0�t�. Equation �7�
can be integrated to obtain the full motion for finite t

R�t2� = R�t1�P exp��
t1

t2

A�t�dt� , �8�

where P stands for the path ordered integral, the Wilson line
integral W

W21 = P exp��
t1

t2

A�t�dt�
= 1 + �

t1�t�t2

A�t�dt + �
t1�t�t��t2

� A�t�A�t��dtdt� + ¯

�9�

in which the matrices are ordered such that the ones occur-
ring at earlier times are on the left.

It can be seen from Eqs. �5�–�7�, that A transforms like a
gauge potential

Ã = �A�−1 + �
d�−1

dt
, �10�

and the Wilson integral transforms as

W̃21 = �1W21�2
−1. �11�

Shapere and Wilczek exploited the invariance of �9� under
rescaling of time, t→��t�, the measure scaling as dt→ �̇dt,
A→A / �̇, to rewrite it in a time-independent geometric form.
This was done �5,6� by defining an abstract vector field A on
the tangent space to S0. The projection A�t� of A at the con-
tour shape S0�t� is evaluated in the direction �S0 /�t in which
the shape is changing

J. BALAKRISHNAN PHYSICAL REVIEW E 73, 036206 �2006�

036206-2



A�t� � AṠ0
�S0�t�� . �12�

In terms of these projected vector fields, �8� was rewritten in
a time-independent form for a given path and independent of
the manner in which the path is parametrized in the contour
shape space as

R�t2� = R�t1�P exp��
S0�t1�

S0�t2�

A�S0�dS0� . �13�

Each of the components Ai�S0� of A coming from each di-
rection in the contour space generates a rigid motion and can
be defined in terms of a fixed basis of tangent vectors 	wi
 at
S0

Ai�S0� � Awi
�S0� . �14�

An infinitesimal deformation s�t� of a contour S0�t� can be
represented as

S0�t� = S0 + s�t� , �15�

where an expansion of s�t� can be made

s�t� = �
i

	i�t�wi. �16�

It was shown in �5,6� that for the particular case S0�t1�
=S0�t2�, i.e., for a closed cycle in which the sequence of
deformations returns the system to the original contour shape
in its configuration space, the line integral in Eq. �9� be-
comes the closed Wilson loop which can be simplified to

W = P exp�� A�t�dt� = 1 +
1

2
� �

i,j
Fij	i	̇ jdt �17�

where

Fij =
�Awi

�wj
−

�Awj

�wi
+ �Awi

,Awj
� . �18�

The field strength tensor Fij gives the resultant net displace-
ment when a sequence of successive deformations is made of
S0 around a closed path and is thus the curvature associated
with the gauge potential.

In the configuration space of contour shapes, the orbit of
each of the n subsystems of the full coupled systems of os-
cillators undergoes the shape deformations described above.
Because of the mutual couplings, the motion in phase space
of any one oscillator coordinate is inseparably linked with
that of any other phase space point which may be the coor-
dinate of another oscillator. The deformation and motion in
the configuration space of the various flow lines and closed
paths of the entire coupled system can thus be viewed as
those on the surface of a solid deformable body which is
undergoing motion solely due to these deformations.

The full system of n oscillators can be represented by an
n-component vector 
i, �i=1, . . . ,n� in an abstract complex
vector space


 =
q1

q2

·

·

qn

� . �19�

A rotation through an angle � with respect to a chosen axis
in this internal vector space does not change the state of the
full system, but just takes one oscillator state qi to another

qi → q̃i = U���qi = eit	�	
qi, �20�

where tk are k number of n�n matrices and are representa-
tions of the generators of the transformation group. Each of
the qis represents the state of the ith oscillator at time t.

There are n independent gauge potentials Awi
correspond-

ing to the n independent internal rotations. Any two rotation
matrices U��a� and U��b� do not commute unless �a and �b

point in the same direction. On application of a common
input to the full system, all the different n oscillators respond
to it. In this case emergence of a collective behavior is de-
termined by the same gauge potential, although perhaps by
different amounts or strengths. In the following section we
would link these gauge potentials with the dynamically rel-
evant variables of the coupled system. In Sec. IV we will
attempt to understand the geometrical basis underlying the
dynamics of phase synchronization between the oscillators.

III. COUPLED NONLINEAR OSCILLATORS
SUBJECT TO FLUCTUATIONS

We now consider the system of n coupled nonlinear os-
cillators qi subject to additive Gaussian white noise �i in the
limit of weak noise

q̇i = f i�q1,q2, . . . ,qn,�� + �i, �i = 1, . . . ,n�, � � Rp,

�21�

where the noise correlations are defined as

��i�t�� j�t��� = Q�ij��t − t�� . �22�

The eigenvalues of the linear stability matrix of the coupled
deterministic system determine the route through which the
full system moves towards a collective behavior. A pure
imaginary complex conjugate pair of eigenvalues at the bi-
furcation point with the remaining �n−2� eigenvalues having
nonzero real parts signals a Hopf bifurcation. The orbit struc-
ture near the nonhyperbolic fixed points �q0 ,�0� of Eq. �1� is
determined by the center manifold theorem. When the sys-
tem described by �22� undergoes a change in stability
through a Hopf bifurcation, one obtains a p-parameter family
of vector fields on a two-dimensional center manifold. In this
case one observes an emergent common frequency of oscil-
lation for the coupled system. Such a situation automatically
realizes frequency synchronization also since the Hopf oscil-
lator rotates with a characterisic frequency. If there are more
than one Hopf bifurcations, clearly it indicates more than one
common frequency of oscillation and one expects to observe
a clustering of the various n coupled oscillators around these
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common characteristic frequencies. We aim to understand in
this paper how phase synchronization results.

The full system of n oscillators changes stability as the
parameter under consideration takes on different values, and
at some parameter values undergoes bifurcations. We will
study the system in the close neighborhood of the bifurcation
points where the system exhibits critical behavior. It is in
these regimes that the behaviors of the individual oscillators
gives way to the collective behavior of the entire coupled
system of the n oscillators. We employ center manifold re-
duction techniques for the system in the presence of fluctua-
tions and perform a separation of variables in terms of fast
and slow variables as in �10,11�, exploiting their dynamical
evolution on different time scales. A drastic simplification
can then be made of the system’s dynamics and one can
write the probability P�qi , t� for the system to be in a certain
configuration at time t in the weak noise limit as the product

P�qi,t� = p�qf�qs�P�qs,t� , �23�

where qs and qf are the slow and the fast variables respec-
tively of the system. The probability P�qs , t� for the critical
variables occurs on a slow time scale and is non-Gaussian in
nature. The properties of the fast variables depend upon the
nonlinearities in the system. For instance in the case when
the coupled system exhibits a cusp bifurcation the fast vari-
able could exhibit non-Gaussian fluctuations �depending on
the specific nonlinear interaction� as it is coupled to the criti-
cal variable. It can be shown �10� that the joint probability
density p�qf �qs� is confined to a narrow strip peaked about
the center manifold. We are interested in the case when the
coupled system also exhibits self-sustained oscillatory be-
havior and makes a transition to limit cycle behavior in the
presence of fluctuations. It was shown in �10,11�, that for a
transition via a Hopf bifurcation, p�qf �qs� has the time-
independent Gaussian form in the qf variables with width
which depends upon the slow variables qs

p�qf�qs� = ��qs�
�

�1/2

e−�qs��qf − qf0
�qs��

2
, �24�

where the center manifold is obtained as a power series in qs:
qf =qf0�qs�. The center manifold theorem has been used in
�12� for providing with a proof for the stability of the syn-
chronized states. The enslaved stable modes are the fast vari-
ables which follow the dynamics of the center �critical�
modes. We rewrite f i�q1 ,q2 , . . . ,qn ,�i� as

f i�q1,q2, . . . ,qn,�i� = −
�F�q1,q2, . . . ,qn,�i�

�qi
. �25�

The Fokker-Planck equation for the full system is

dP�qi,t�
dt

=
dP�qs,qf,t�

dt
=

�

�qi
�P�qi,t�

�F

�qi
� +

�2P�qi,t�
�qi

2 .

�26�

Using Eq. �23� we can rewrite this as

dP�qs,qf,t�
dt

=
d

dt
�p�qf�qs�P�qs,t��

=
dp�qf�qs�

dt
P�qs,t� + p�qf�qs�

dP�qs,t�
dt

= − �HFP1�qf,qs� + HFP2�qs,t��P�qs,qf,t� . �27�

Hence in the close proximity of the bifurcation, the operator
HFP can be written in a separable form, the part HFP�qs , t�
independent of the fast variables. Here

− �HFP2�qs,t��P�qs,qf,t� =
�

�qs
�P�qi,t�

�F

�qs
� +

�2P�qi,t�
�qs

2 .

�28�

We find it convenient to analyze the coupled dynamics in a
path integral framework. We follow the procedure of Gozzi
�13� to recast the system, Eqs. �21� and �27� as a path inte-
gral, and define

� = P�qf,qs,t�eF�qi�/2 �29�

so that �26� and �28� can be rewritten as

d�

dt
= − 2HFP� , �30�

where

HFP = −
1

2

�2

�qi
2 +

1

8
� �F

�qi
�2

−
1

4

�2F

�qi
2 . �31�

To enable computation of correlation functions within the
path integral formalism, we introduce n external sources Ji to
probe the full coupled system so that the partition function
Z�J� for the system can be written as the time ordered path
integral

Z�J� = NT�
i
� DqfDqsD�i

�exp�−
1

Q
� Ji�t��qi�t��dt��P�qs,t�p�qf�qs���qi − qi�

�

�exp�−� �i
2

4Q
dt�� �32�

where qi� denote the solution of the system of Langevin Eq.
�21�, T denotes time ordering and N is the normalization
constant. From Eq. �21� one can write

��qi − qi�
� = ��q̇i − f i�q1,q2, . . . ,qn� − �i�� ��i

�qi
� . �33�

We can rewrite the Jacobian ���i /�qi� of the transformation
�i→qi as
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� ��i

�qi
� = det���ij�t −

�f i�q1,q2, . . . ,qn�
�qj�t��

���t − t���
= exp�tr ln �t��ij��t − t�� − �t�

−1 �f i

�qj�t��
�� . �34�

The operator �t�
−1 satisfies the relation

�tG�t − t�� = ��t − t�� . �35�

Then we can rewrite Eq. �34� in terms of the Green function
in �35� as

� ��i

�qj
� = exp�tr�ln �t + ln���t − t�� + Gij�t − t��

�f i

�qj�t��
��� .

�36�

The system evolves forward in time. Hence

G�t − t�� = ��t − t�� . �37�

Using this and expanding the logarithm in the argument of
the exponential, we can simplify Eq. �36� to

� ��i

�qj
� = etr ln �t exp��

0

t

dt���0�
�f i

�qj�t��
� . �38�

Substituting this back into Eq. �32� and using the midpoint
prescription ��0�=1/2 of Stratonovich, we have

Z�J� = NT�
i
� DqfDqsD�i exp�−

1

Q
�

0

t

Ji�t��qi�t��dt��
�exp�1

2
�

0

t �f i

�qj�t��
�exp�−

1

4Q

��
0

t

dt��q̇i − f i�q1,q2, . . . ,qn��2� . �39�

Equation �39� can be reduced to

Z�J� = NT�
i
� DqfDqs exp�−

1

Q
�

0

t

Ji�t��qi�t��dt��
�exp�− �

0

t

dt��1

2

�2F

�qi�qj
+

1

4Q
q̇i

2 +
1

4Q
� �F

�qi
�2��

�exp�−
1

2Q
�F�t� − F�0���

= NT�
i
� DqfDqs exp�− �

0

t

dt�

��LFP +
1

Q
Ji�t��qi�t����exp�−

1

2Q
�F�t� − F�0��� ,

�40�

where we have defined a Fokker-Planck Lagrangian

LFP�qi, q̇i,t� =
1

4Q
q̇i

2 +
1

4Q
� �F

�qi
�2

+
1

2

�2F

�qi�qj

=
1

4Q
q̇i

2 + f i
2 −

1

2

�f j

�qi�qi
, �41�

which is related to the Fokker-Planck Hamiltonian HFP de-
fined in Eqs. �30� and �31� through a Legendre transforma-
tion

HFP��i,qi,t� = �iq̇i − LFP�qi, q̇i,t� . �42�

Here �i are the momenta canonically conjugate to the vari-
ables qi

�LFP

�q̇i

= �i =
1

Q
q̇i �43�

so that

HFP��i,qi,t� = Q�i
2 +

1

4Q
� �F

�qi
�2

+
1

2

�2F

�qi�qj
. �44�

We use these relations in Eq. �40� to write the partition func-
tion as

Z�J� = NT�
i
� D�iDqi exp�− �

0

t

dt��HFP��i,qi,t�

+
1

Q
Ji�t��qi�t���� . �45�

From Eqs. �27� and �29�–�31�, we see that in the close prox-
imity of the bifurcation HFP can be written in a separable
form as

HFP��i,qi,t� = HFP�� f,qf ;�s,qs,t�

= HFP1�� f,qf ;qs,t� + HFP2��s,qs,t� . �46�

Thus the corresponding LFP can also be split up as
LFP�qi , q̇i , t�=L1

FP�qf , q̇f , t�+L2
FP�qs , q̇s , t�. Then we can

write

Z�J� = NT� DqfDqs exp�− �
0

t

dt��L1
FP�qf, q̇f�

+ L2
FP�qs, q̇s,t� +

1

Q
Ji�t��qi�t���� . �47�

An averaging over the fast degrees of freedom enables the
partition function to be written in terms of an effective La-
grangian as a function of only the slow degrees of freedom.
This can be done by first rewriting the fast degrees of free-
dom in action-angle variables �� , I�. The emergence of a non-
Abelian gauge structure can then be seen arising from the
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evolution of the slow dynamics but induced by the fast vari-
ables. After tracing the origin of the induced gauge potential
to the slow dynamics, we obtain the conditions necessary to
be satisfied in order for the coupled elements to be synchro-
nised in phase. To begin with, we introduce a generating
function S�	��qf , I ;qs� which effects the transformation
�qf ,� f�→ �� , I� to the action angle variables

�S�	��qf,I;qs�
�qi

= �i;
�S�	��qf,I;qs�

�Ii
= �i. �48�

S�	��qf , I ;qs� is many valued and time dependent since the
slow variables change with time.

The phase space structure associated with adiabatic ho-
lonomy in classical systems was studied by Gozzi and
Thacker �14� through Hamiltonian dynamics. We find it use-
ful to employ their methods for our study of coupled oscil-
latory systems in a fluctuating environment. Denote
H1�I ,qs , t�=HFP1�qf�� , I ,qs� ,� f�� , I ,qs� , t�. Using the ca-
nonical transformation law, H1 can be expressed in terms of
the action-angle variables as

H̄1��,I,qs�t�� = H1�I,qs,t� + q̇sl
�S�	��qf,I;qs�

�qsl

. �49�

Using the methods of �14–17�, we determine the dynamics
of the M critical slow variables qs of the system by averaging
out the N fast variables which influence them

��H̄1�� =
1

�2��N � dN�H̄1��,I,qs�t��

=
1

�2��N � dN��H1�I,qs� + q̇sl

�S�	��qf,I;qs�
�qsl

� , �50�

where the double angular brackets denote the averaging over
all �:

��f�� =
1

�2��N � dN�f .

Since S�	��qf , I ;qs� is multivalued, the single-valued function

���,I,qs� = S�	��qf��,I,qs�,�s��,I,qs�,qs�, �0 � � � 2�� ,

�51�

is introduced �18�. We have

��

�qsl

=
�S	

�qsl

+ � f i

�qfi

�qsl

. �52�

Hence this can be substituted into Eq. �50� to obtain

��H̄1�� = H1�I,qs� + q̇sl�� ��

�qsl

− � f i

�qfi

�qsl

�� . �53�

The total Hamiltonian of the system is given, after perform-
ing the angle averages by

Hav�I,�s,qs� = ��H1�qf,� f ;qs� + H2�qs,�s���

= ��H̄1��,I;qs� + H2�qs,�s��� = H̄�I,�s,qs�

+ q̇sl�� ��

�qsl

− � f i

�qfi

�qsl

�� , �54�

where we have let

H̄�I,�s,qs� = H1�I,qs� + H2�qs,�s� . �55�

The Gibbs partition function in Eq. �45� can be rewritten in
terms of the fast and slow variables as

Z�J� = NT� D� fD�sDqfDqs exp�− �
0

t

dt��HFP1�qf,� f ;qs� + HFP2�qs,�s� +
1

Q
�Js�t��qs�t�� + Jf�t��qf�t�����

= NT� D�sDqsDID� exp�− �
0

t

dt��H1�I,qs� + H2�qs,�s� − q̇sl
� f i

�qfi

�qsl

+ q̇sl

��

�qsl

+
1

Q
�Js�t��qs�t�� + Jf�t����t�����

= NT� D�sDqsDID� exp�− �
0

t

dt��H̄�I,�s, q̇s� − q̇sl
� f i

�qfi

�qsl

+
1

Q
�Js�t��qs�t�� + Jf�t����t����� . �56�

Performing the � integration and simplifying the resulting expression, we get

Z�J� � NT� D�sDqsDI exp�− �
0

t

dt��Hav�I,�s,qs� +
1

Q
Jsqs�� . �57�

We use the Magnus expansion �19–21� for expanding the
time-ordered integral, which gives the final state properties

in terms of integrals over the initial state ones, to rewrite Eq.
�57� as
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Z�J� � N� D�sDqsDI exp�− �
0

t

dt��Hav +
1

Q
Jsqs

+
1

2�Hav�t��,�
0

t�
Hav�t1�dt1�

+
1

4�Hav�t��,�
0

t� �Hav�t2�,�
0

t2

Hav�t1�dt1�dt2�
+

1

12��Hav�t��,�
0

t�
Hav�t2�dt2�,

�
0

t�
Hav�t1�dt1� + . . . �� . �58�

The variation of parameter�s� �i in time of the system brings
about change in its stability. The commutator terms in the
Magnus expansion hence arise on account of this parametric
time dependence of the Hamiltonian: �Hav�t�� ,Hav�t1��
= �Hav��i�t��� ,Hav�� j�t1���. The necessity of the time order-
ing is also motivated by the work of Ref. �22�. who have
shown that the order of arrival of signals at an oscillator in a
network of pulse-coupled oscillators is crucial in determining
changes in its phase.

Retaining terms only up to the first commutator in the
expansion and substituting for Hav from Eq. �54�, we obtain
after some simplifications

Z�J� � N� D�sDqsDI exp�− �
0

t

dt��H̄�I,�s,qs��

+ q̇sl�� ��

�qsl

�� − q̇sl��� f i

�qfi

�qsl

�� +
1

Q
Jsqs

−
1

2�H̄�I,�s,qs,t��,�
0

t�
H̄�I,�s,qs,t1�dt1�

+
1

2�H̄�I,�s,qs,t��,�
0

t�
dt1q̇sm��� fk

�qfk

�qsm

���
+

1

2�q̇sm��� fk

�qfk

�qsm

��,�
0

t�
H̄�I,�s,qs,t1�dt1�

−
1

2�q̇sl��� f i

�qfi

�qsl

��,�
0

t�
dt1q̇sm��� fk

�qfk

�qsm

���� .

�59�

From here we can define an effective Hamiltonian Hef f

Hef f = H̄�I,�s,qs� + q̇sl�� ��

�qsl

�� − q̇sl��� f i

�qfi

�qsl

��
−

1

2�q̇sl��� f i

�qfi

�qsl

��,�
0

t�
dt1q̇sm��� fk

�qfk

�qsm

��� . �60�

From a Hamiltonian variational principle, it was shown in

�14� from simple arguments that the averaged fast motion
induces an effective gauge field which acts on the slow vari-
ables. We follow these arguments closely for the coupled
system subject to fluctuations near the instability. The varia-
tional principle gives

�Sef f = ��
0

T

dt��sl
q̇sl

− Hef f�I,�s,qs�� = 0

= ��
0

T

dt��sl
q̇sl

− H̄�I,�s,qs� − q̇sl�� ��

�qsl

− � f i

�qfi

�qsl

��
−

1

2�q̇sl��� f i

�qfi

�qsl

��,�
0

t�
dt1q̇sm��� fk

�qfk

�qsm

���� = 0

= ��
0

T

dt���sl
+ ��� f i

�qfi

�qsl

���q̇sl
− H̄�I,�s,qs�

+
1

2�q̇sl��� f i

�qfi

�qsl

��,�
0

t�
dt1q̇sm��� fk

�qfk

�qsm

���� . �61�

The term having the single-valued function � vanishes since
it is a total time derivative. Varying Sef f with respect to �s
and qs, keeping the end-points fixed gives

�Sef f = �
0

T

dt���sl�q̇sl
−

�H̄

��sl

� + �qsl�� �

�qsl

��� f i

�qfi

�qsm

��
−

�

�qsm

��� f i

�qfi

�qsl

�� +
1

2���� f i

�qfi

�qsm

��,��� fk

�qfk

�qsl

����q̇sm

−
�H̄

�qsl

− �̇sl�� . �62�

We define as in �14�, the quantity in angular brackets as

��� f i

�qfi

�qsl
�� = Al. �63�

Then �Sef f =0 leads to

q̇sl
=

�H̄

��sl

�̇sl
= −

�H̄

�qsl

+ � �Am

�qsl

−
�Al

�qsm

+
1

2
�Al,Am��q̇sm

. �64�

As in �14� we can identify Al with a gauge potential, and a
curvature tensor Flm can be defined as

Flm =
�Am

�qsl

−
�Al

�qsm

+
1

2
�Al,Am� , �65�

so that the momenta in �64� can be rewritten as
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�̇sl
= −

�H̄

�qsl

+ Flm
�H̄

��sl

. �66�

The commutator terms in the momenta and curvature tensor
were absent in Ref. �14�. since the Magnus expansion for the
time ordered integral was not used there.

It should be noted that these commutator terms in Eqs.
�61�, �62�, and �64�–�66� arising from terms such as
�H��� ,H����� in Eq. �58� could in general impart a nonflat
nature to the connection and generate a curvature which is
nontrivial by effectively generating new parameters which
were not present in the original Hamiltonian. �See for ex-
ample �23,24� where in the context of examining the connec-
tion between classical and quantum anholonomy for some
interesting systems �in particular the displaced harmonic os-
cillator �25��, it was shown that for time-varying Hamilto-
nians, the original Hamiltonian must be embedded into a
larger class for locating the effective parameter space where
the Berry phase two-form has singularities.� The appearance
of a nontrivial gauge structure in general dynamical systems,
including classical systems, due to a slow variation of the
parameters was also explicitly demonstrated in the seminal
work in �26�.

Equation �64� shows that the curvature tensor Flm exerts a
velocity dependent force on the slow variables. In order to
write canonical equations of motion, one has to therefore
introduce modified Poisson bracket relations in the slow-
variable space

	f�qs,�s�,g�qs,�s�
 = � �f

��sl

�g

�qsl

−
�f

�qsl

�g

��sl

� − Flm
�f

��sl

�g

��sm

.

�67�

Thus the gauge potential coupled to the slow variables is
induced by the fast degrees of freedom as is evident from
�63�, the spontaneous appearance of the gauge symmetry be-
ing associated with the phase degrees of freedom of the cen-
ter modes. The emergence of a gauge structure for the system
follows from the crucial property of separability of the vari-
ables as slow and fast ones evolving at different time scales,
which results from the slaving principle for the stable modes
near the bifurcation in a noisy system. This leads to the mo-
tion and deformation of the closed orbits in the configuration
space. The rotational symmetries of the sequence of succes-
sive deformations of each orbit brought about the gauge po-
tential discussed in Sec. II. The analysis above in the current
section shows that this can be related to the dynamically
evolving variables of the coupled system.

Having made the correspondence of the gauge potential Al
and the curvature tensor Flm with the dynamics of the actual
coupled system through the fast and slow variables, we pro-
ceed to examine under what conditions phase locked behav-
ior and full synchronization would occur in a coupled sys-
tem.

IV. CONDITION FOR SYNCHRONIZATION BETWEEN
THE COUPLED OSCILLATORS

At any instant of time, the phase difference between two
oscillators q1 and q2 located at two different points x and y in

the configuration space can be found from their inner prod-
uct:

cos �y =
„q2�y�,q1�y�…
�„q2�y�,q1�y�…�

=� ddyddxTr�P�e�x
yA�

	�s�t	ds���
„q2�y�,q1�x�…

�„q2�y�,q1�y�…�
,

�68�

where �y denotes the angle between the oscillators q1�x� and
q2�y� in configuration space, measured at the coordinate y.
The path-ordered Wilson line integral appears in the equation
above since q1�x� must be parallelly transported to the coor-
dinate point y in order to compare it with q2 located at y. P
denotes the path ordering. Since the qis are related to each
other through a gauge transformation in the n-dimensional
configuration space, this can be rewritten using Eq. �20� as

cos �y =� ddyddxTr�e−it���
P�e�x

yA�
	�s�t	ds���

„q1�y�,q1�x�…
�„q2�y�,q1�y�…�

=� ddyddxTr„e−it���
P�e�x

yA�
	�s�t	ds��P�e�y

xA�
��p�t�dp��…

�
„q1�y�,q1�y�…
�„q2�y�,q1�y�…�

=� ddyddxTr�e−it���
P�e�x

yA�
	�s�t	ds��P�e�x

yA�
��p�t�dp���

�
1

�„q2�y�,q1�y�…�
�69�

since (q1�y� ,q1�y�)=1. If the angle between q1 and q2 re-
mains constant for all times, then the oscillators q1 and q2
would be phase locked; if the angle between them is vanish-
ing for all time, the oscillators would be fully synchronized
in phase with each other. We would like to determine the
conditions under which the phases of any two oscillators in a
coupled nonlinear system would be locked and fully syn-
chronised. Since each qi is an oscillator, each undergoes pe-
riodic dynamics in the configuration space. Let q1�y� after
being parallelly transported from coordinate x, now return to
the point x during the course of its temporal evolution. We
denote the state of this oscillator after completing one orbit
and returning to x by q1��x�. By the time q1 completes this
orbit, q2 would have evolved to another point z. Hence we
would now like to calculate the angle between q2�z� and
q1��x�. We have

q1��x� = P�e�A�
	�s�t	ds��q1�x� , �70�

q2�z� can be parallelly transported to x to compare it with
q1��x�

q2�x� = P�e�z
xA�

	�s�t	ds��q2�z� . �71�

Then the angle between q1 and q2 at x can be calculated
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cos �x =
„q2�x�,q1�x�…
�„q2�x�,q1��x�…�

=� ddzddxTr	�P�e�z
xA�

	�s�t	ds���TP�e�A�
��p�t�dp��


�
„q2�z�,q1�x�…

�„q2�x�,q1��x�…�

=� ddzddxTr	�P�e�z
xA�

	�s�t	ds��eit���
�TP�e�A�

��p�t�dp��


�
„q1�z�,q1�x�…

�„q2�x�,q1��x�…�

=� ddzddxTr	�P�e�z
xA�

	�s�t	ds��eit���
P�e�x

zA�
	�l�t	dl���T

�P�e�A�
��p�t�dp��
 „q1�x�,q1�x�…

�„q2�x�,q1��x�…�
. �72�

The change in the angle between q1 and q2 during a time
interval t can be found using Eqs. �69� and �72� and by
simplifying the resulting expression, to lowest order in � to
be

cos �y − cos �x

= −
C�p�

2
� ddxddy�− i�aFij

a + Fij
a�

y

x

A�
a �s�ds�

+ ��	a +
��	a

2
���Fij

a�
y

x

A�
	�s�ds� + ¯ � . �73�

In arriving at this expression we have used the relation for
the Wilson loop integral

P�e�A�
��s�tads�� = eF�� �74�

in which the ta �introduced earlier in Eq. �20�� are generators
of the Lie algebra

�ta,tb� = i�abctc �75�

and

taF��
a = ��taA�

a − ��taA�
a − i�taA�

a ,tbA�
b� �76�

is the curvature tensor of the complex abstract vector space.
Also we have used the matrix identity

eAeB = eA+B+�1/2��A,B�+¯ �77�

and the trace relations:

tr�tp
a� = 0,

tr�tp
atp

b� = C�p��ab, �78�

where C�p� is a constant for the representation p. As the
system we are considering is subject to fluctuations and is
not deterministic, the quantity which is actually of interest to
us is the noise average �cos �y −cos �x� of the phase differ-
ence between q1 and q2

�cos �y − cos �x�

= −
C�p�

2 �� ddxddy�− i�aFij
a + Fij

a�
y

x

A�
a �s�ds�

+ ��	a +
��	a

2
���Fij

a�
y

x

A�
	�s�ds� + ¯ �� . �79�

Using the Gauss-Bonnet theorem, we see that the first inte-
gral on the right hand side of this equation gives a topologi-
cal invariant, the Euler characteristic �E of the surface S over
which the integration is performed: �SFij =�E. For the situa-
tion in which there is perfect phase synchronization between
any two oscillators in the system, this constant term on the
right-hand side of Eq. �79� should vanish and the other terms
in the equation must also vanish. The two torus T2 is a well
known example of a topological space with vanishing Euler
characteristic. The limit cycles of the coupled system are
therefore constrained to remain on T2 as they synchronize in
phase. For the oscillators q1 and q2 to exhibit phase-locked
behavior, we observe that we must have, to lowest order in �

C�p�
2 �� ddxddy�Fij

a�2�	a +
��	a

2
����

y

x

A�
	�s�ds���

= const. �80�

While the explicit value of the left hand side of �80� would
vary from one set of coupled systems to another, it is inter-
esting to note that in all cases external noise seems to play a
role in bringing about the phase synchronization. This can be
seen as follows. The noise averages of A� and F�� are cal-
culated by solving the coupled Langevin equations in �21�
using Eqs. �63� and �65�. From Eqs. �22�, �48�, and �63� we
see that the lowest order terms of �A�� and �F��� such as
���� f i

��� would not contribute so that at least to this order, the
left hand side of Eq. �80� is brought very close to zero taking
the system towards synchrony, whereas in the case when no
fluctuations are present these terms would be nonzero.

The role of noise in bringing about phase synchrony can
also be understood in the following way. Consider the analy-
sis by Ermentrout �27� of two weakly coupled oscillators:

1

�i

dZi

dt
= Fi�Zi� + �Gi�Zi,Zj�, i, j = 1,2, i � j . �81�

Zi�RNi, Fi are continuous and differentiable, Gi are continu-
ous, and each uncoupled system dZi /dt=Fi�Zi� admits a
unique, globally stable periodic solution. It was shown in
�27� that the coupled state admits a parameter regime in
which n :m phase locking occurs between the two oscillators,
after n cycles of oscillator 1 and m cycles of oscillator 2.
Using a multiple-scale perturbation technique, introducing
slow � and fast s time variables: d /dt=�2�d /ds�+��d /d��,
this N1+N2-dimensional system was reduced to a one-
dimensional evolution equation on a slow time scale for the
phase difference � between the two oscillators. This was
shown to have the form
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d�

d�
= H��� , �82�

where H���=H��+2��, and the phase shifts �’s vary
slowly in the direction of the flow of the limit cycle which is
formed due to the coupling of the oscillators. Further it was
shown that the phase-locked solution to the coupled system
corresponds to the fixed points of Eq. �82�, H being identi-
fied with the Poincare map for the flow of the full system.
For a nonzero value of the noise strength, the sharp transition
to the critical point is replaced by a bifurcation region, and
hence the time spent by the unstable modes near the bifur-
cation �critical slowing down of the deterministic system at
the bifurcation� is much longer in the stochastic case. It is
known �28� that the slower the system moves along any part
of the limit cycle, the larger is its statistical weight in that
part of the limit cycle. Hence, from Eq. �82� and the result of
�27� mentioned above, the phase-locked solutions of the
coupled oscillators are statistically favored. Moreover, since
in the stochastic system these �unstable� slowly varying
phase differences show an increase in the relaxation time as
the instability is approached, as compared to the determinis-
tic case, phase-locking and synchronous solutions have a
larger statistical weight in the presence of the weak noise.

We have considered the case in which the coupled system
exhibits limit cycle behavior. The formation of a limit cycle
involves symmetry breaking, permitting the existence of
both stationary and time-dependent probability densities �for
finite and infinite system volumes, respectively�. The prob-
ability peaks for the time dependent densities rotate along the
limit cycle, while the time-independent densities are crater
shaped. A particular phase is associated with every given
realization of a limit cycle and a choice made corresponds to
breakdown of gauge symmetry. The emergent gauge struc-
ture associated with the phase degrees of freedom of the
center modes in the vicinity of the bifurcation, enables us to
introduce the geometrical quantities Al and Flm, and to obtain
the condition for phase locking �Eq. �80�� in terms of these
quantities.

Our analysis was made possible only because of the pres-
ence of weak noise which, as we showed in Sec. III, plays
the crucial part of enabling separability of the variables near
the bifurcation into slow and fast ones evolving at different
time scales. Measurable phase differences between oscilla-
tors in the presence of the �weak� Gaussian white noise are
noise-averaged quantities, and from Eq. �80�, are determined
largely by the fluctuations in the gauge potential. Since these
average out to zero, we conclude that the presence of �weak�
Gaussian white noise always enhances phase synchrony.

Recent experimental observations by Fujii et al. �7� of
two chemical oscillators separated by some distance in the
light-sensitive Belousov-Zhabotinsky reaction show self-

synchronization of phase and frequency by application of
noise. They observed spontaneous synchronization for small
separation distances in the absence of noise and demon-
strated the existence of an optimum noise intensity for the
self synchronization phenomenon. Phase synchronization in
coupled nonidentical FitzHugh-Nagumo neurons subject to
independent external noise was also demonstrated through
numerical simulations in �8�. Noise-induced phase and fre-
quency synchronization was also demonstrated recently in
stochastic oscillatory systems both analytically and with nu-
merical simulations �9�. �See also �29�.�

Our analysis provides a framework to understand these
findings and opens avenues for deeper studies relating coop-
erative phenomena in coupled nonlinear stochastic systems,
with the underlying rich geometrical structure of the phase
space generated by the complex dynamics, and with associ-
ated mathematical invariants which govern the system’s
asymptotic behavior.

V. CONCLUSION

We have introduced a geometrical approach aiming to un-
derstand phase synchronization among coupled nonlinear os-
cillators subject to additive noise. We have considered the
specific scenario when the collective dynamics of all the os-
cillators also exhibits limit cycle behavior arising via one or
more Hopf bifurcations, consequently implying the occur-
rence of frequency synchronization. We demonstrate the
emergence of a non-Abelian gauge structure arising from the
evolution of the slow dynamics but induced by the fast de-
grees of freedom. The condition required to be satisfied in
order for phase locking and phase synchronization to be ex-
hibited is obtained in terms of characteristic invariants of the
surface generated by the dynamics of the system. We find
that weak noise helps in bringing about phase synchroniza-
tion. This provides an explanation of recent experimental
observations and numerical simulations of noise-induced
phase synchronization �7,8� �see also �9,29��. Our work also
motivates further studies of the internal structure and geom-
etry of synchronization defects in spiral waves in oscillatory
media which have been areas of keen interest in recent times
�30,31�.
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